SPI-8000A Series Surface Mount, Separate Excitation Step-down Switching Mode Regulator ICs

-Features

- Surface-mount 16 pin package
- Output current: 3.0A
- High efficiency: 91% (at $\mathrm{V} \mathrm{IN}=10 \mathrm{~V}$, $\mathrm{lo}=1 \mathrm{~A}$, Vo $=5 \mathrm{~V}$)
- Capable of downsizing a choke-coil due to IC's high switching frequency (125 kHz). (Compared with conventional Sanken devices)
- The output-voltage-variable type can vary its output voltage from 1 V to 14 V because of its low reference voltage (Vref) of 1 V .
- Wide Input Voltage Range (8 to 50V)
- Output ON/OFF available
- Built-in overcurrent and thermal protection circuits

■Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
DC Input Voltage	Vin	53	V
Power Dissipation	PD*1, 2	2.4	W
Junction Temperature	T_{j}	+125	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg	-40 to +125	${ }^{\circ} \mathrm{C}$
Thermal Resistance (junction to case)	$\theta_{\mathrm{j} \cdot \mathrm{c}}{ }^{2}$	18	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance (junction to ambient air)	$\theta_{\mathrm{j}=} \mathrm{a}^{2}$	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$

*1: Limited due to thermal protection.
*2: When mounted on glass-epoxy board $700 \mathrm{~cm}^{2}$ (copper laminate area $30.8 \mathrm{~cm}^{2}$)

-Applications

- Onboard local power supplies
- OA equipment
- For stabilization of the secondary-side output voltage of switching power supplies

Recommended Operating Conditions

Parameter		Symbol	Ratings
DC Input Voltage Range	VIN	$\left(8 \text { or } \mathrm{V}_{0}+3\right)^{-1}$ to 50	
Output Voltage Range	Vo	1 to 14	
Output Current Range	o	0.02 to 3.0	
Operating Junction Temperature Range	$\mathrm{T}_{\text {jop }}$	-30 to +125	
Operating Temperature Range	Top	-30 to +125	

*1: The minimum value of an input voltage range is the higher of either 8 V or $\mathrm{Vo}+3 \mathrm{~V}$.

■Electrical Characteristics

* Pin 4 is the CE/SS pin. Soft start at power on can be performed with a capacitor connected to this pin. The output can also be turned ON/OFF with this pin. The output is stopped by setting the voltage of this pin to VssL or lower. CE/SS-pin voltage can be changed with an opencollector drive circuit of a transistor. When using both the soft-start and ON/OFF functions together, the discharge current from C_{4} flows into the ON/OFF control transistor. Therefore, limit the current securely to protect the transistor if C_{3} capacitance is large.
The CE/SS pin is pulled up to the power supply in the IC, so applying the external voltage is prohibited.

Vo. ON/OFF

Soft start

Soft start +Vo. ON/OFF

■Block Diagram

■Typical Connection Diagram

SPI-8010A

Diode D1

- Be sure to use a Schottky-barrier diode for D1. If other diodes like fast recovery diodes are used, ICs may be destroyed because of the reverse voltage generated by the recovery voltage or ON voltage.
Choke coil L_{1}
- If the winding resistance of the choke coil is too high, the efficiency may drop below the rated value.
- As the overcurrent protection starting current is about 4.5A, take care concerning heat radiation from the choke coil caused by magnetic saturation due to overload or short-circuited load.
Capacitors $\mathrm{C}_{1}, \mathrm{C}_{2}$
- As large ripple currents flow through C_{1} and C_{2}, use high-frequency and low-impedance capacitors aiming for switching-mode-power-supply use. Especially when the impedance of C_{2} is high, the switching waveform may become abnormal at low temperatures. For C_{2}, do not use a capacitor with an extremely low equivalent series resistance (ESR) such as an OS capacitor or a tantalum capacitor, which may cause an abnormal oscillation.
Resistors R2, R3
- R_{2} and R_{3} are the resistors to set the output voltage. Set their values so that Iref becomes approx. 2 mA . Obtain R_{2} and R_{3} values by the following formula:

$$
\mathrm{R} 2=\frac{(\text { Vout-VreF })}{\operatorname{IREF}}=\frac{(\mathrm{VoUT}-1)}{2 \times 10^{-3}}(\Omega), \mathrm{R} 3=\frac{\mathrm{V}_{\text {REF }}}{\operatorname{IREF}}=\frac{1}{2 \times 10^{-3}} \doteqdot 500(\Omega)
$$

©To create the optimum operating conditions, place the components as close as possible to each other.

Ta-Pd Characteristics

$\mathrm{P}_{\mathrm{D}}=\mathrm{V}_{\mathrm{O}} \cdot \mathrm{lo}\left(\frac{100}{\eta \chi}-1\right)-\mathrm{V}_{\mathrm{F}} \cdot \mathrm{lo}\left(1-\frac{\mathrm{V}_{\mathrm{O}}}{\mathrm{VIN}_{\mathrm{IN}}}\right)$
Note 1: The efficiency depends on the input voltage and the output current. Therefore, obtain the value from the efficiency graph and substitute the percentage in the formula above.
Note 2: Thermal design for D1 must be considered separately.
Vo: Output voltage
VIN : Input voltage
lo : Output current
$\eta \chi$: Efficiency (\%)
V_{F} : Diode D_{1} forward voltage SPB-G56S $\cdots 0.4 \mathrm{~V}(\mathrm{lo}=2 \mathrm{~A})$

